DATEXII

New developments in DATEX II content

Lane Management Model

6TH FORUM WEBINAR SERIES

Please ask your questions in the Q&A

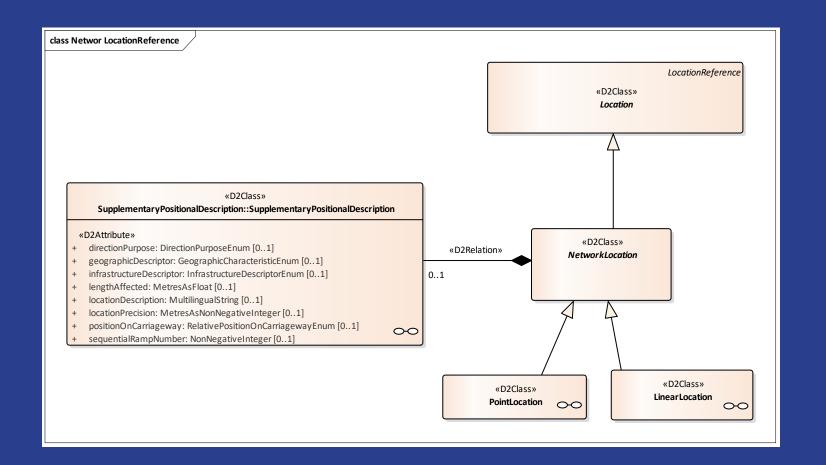
Lane Carriageway management modeling

- Current DATEX II v3.x Location Referencing allows to manage LOGICAL information on lane whith some limits
- **Situation publication** support the description of lanes needing multiple record to specify several lane management configuration evolving along the carriageway.
- **Precise lane status** information is generated in specific road management use cases such as:
 - in Dynamic Lane Management DLM through Lane Control System LCS VMS
 - In Hardshoulder Management systems in combination or not with DLM
 - in Roadwork Management with specific fixed or even dynamic AFFEX ettings

Lane Carriageway Management modeling

Goals

- Optimise information management with location details coding exact lane management information (logical lane description)
- Reuse of current Location Referencing model in ISO 16157-2
- Reuse of Traffic Regulation as being developed in TS 16157-11

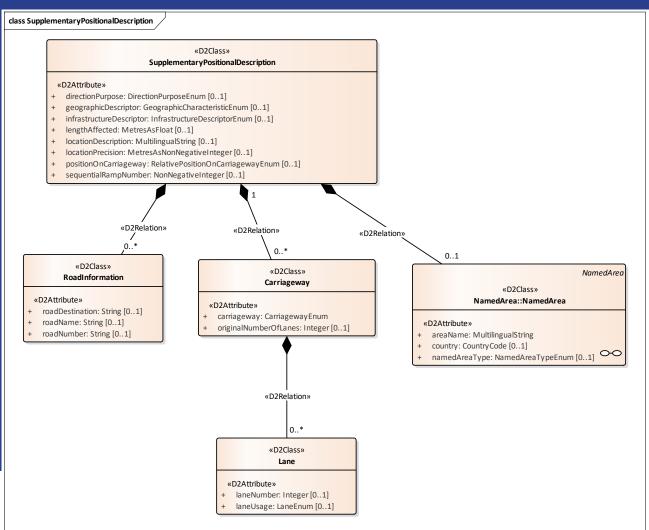

Applications

- Optimised and accurate information description for DLM, HM and Roadworks Zones.
- Support to deliver in vehicle information such as C ITS services.
- Further road/carriageway features description associated to road along carriageway, supporting development in CCAM field, to be analysed and developed.

 DATEX II

Lane Management in DATEX II v 3.x

Location is associated to any Situation Record / Measurement Sites, VMS, Devices


Point and Linear Location Referencing

Optional Supplementary Positional Description

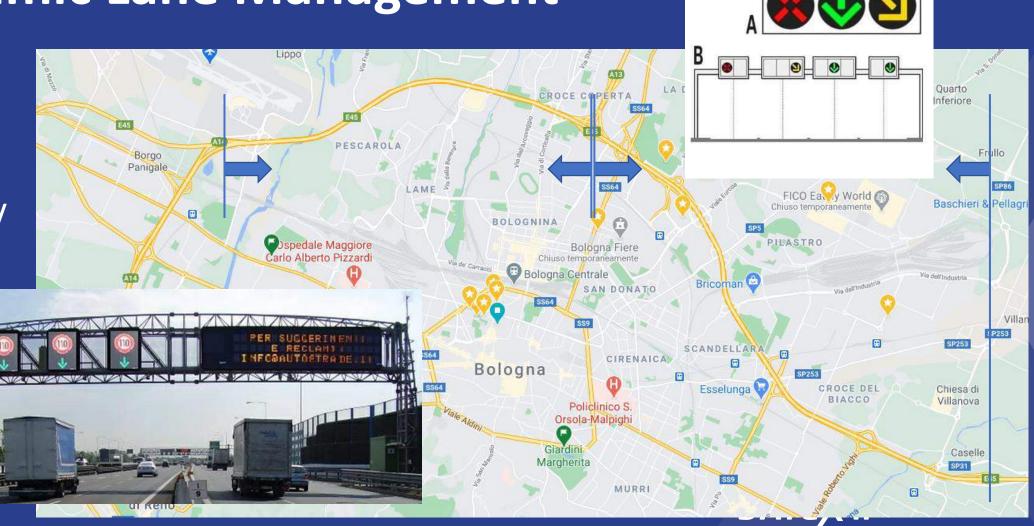
DATEXII

Lane Management in DATEX II: Supplementary Positional Description

- SPD allows to manage Carriageway and Lanes details for any carriageway:
 - It's a «logical» information
 - Original Number of lanes
 - Lane number: 0=hardshoulder + 1,2,n
 - Lane usage: specific lane usage if needed:
- Being related to the location any lane numbering variation along the road in a single event needs to introduce several SituationRecords to manage sections with same carriageway and lane details
- No detail about lane transition zones is possible **DATEX II**

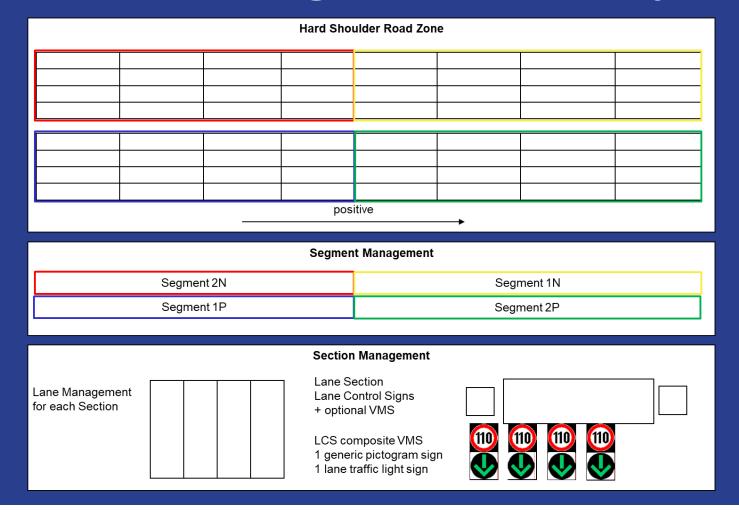
Lane Management use cases: DLM & HM

- Dynamic Lane Management (DLM)
 - Supported by Lane Control System VMS
 - Per lane restrictions applies are advised/granted by the VMS signals.
 - Under monitoring systems and enforcement when applicable
 - Tunnel Management Applications
- Hardshoulder management (HM)
 - It can be combined with DLM
 - Hardshoulder running is set by specific

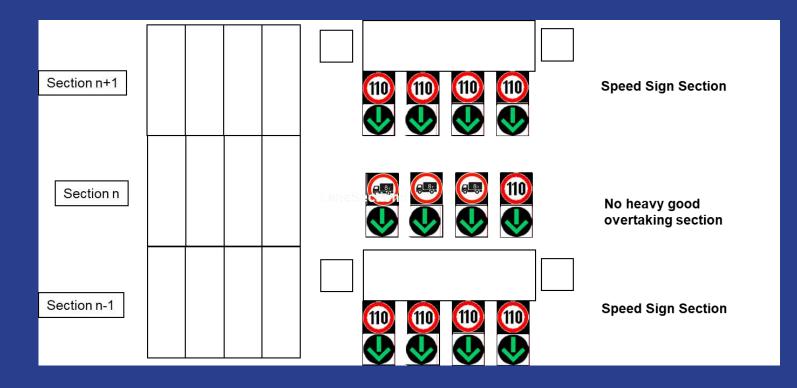


Dynamic Lane Management

Bologna A14 Motorway


Dynamic
Hardshoulder /
Lane Mgmt

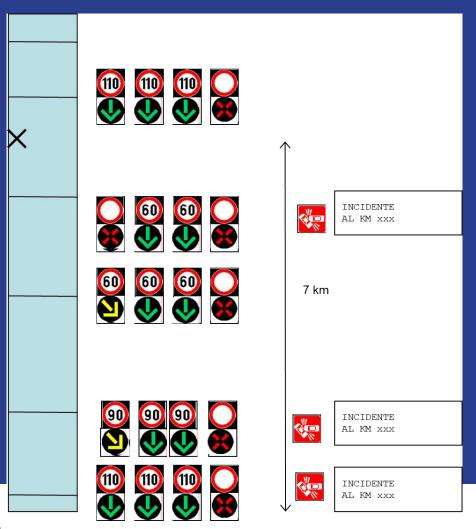
Lane Management Concepts



- «Bologna» HM Zone
- Segments bounded by
 - Bologna Casalecchio
 - Bologna Arcoveggio
 - Bologna S.Lazzaro
- Section and Lanes
 - Any 500m-800m based on road morphology
 - LCS and VMS alternated on the road

DATEXII

Dynamic Lane Management

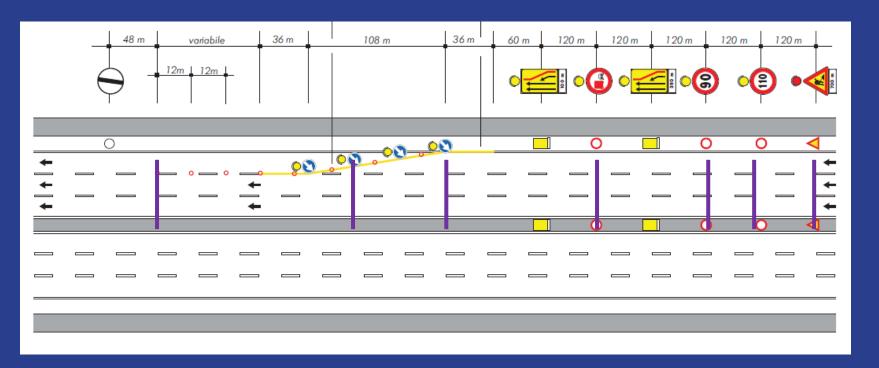

- Lane Sections management via Lane Control systems
- Per Lane Restrictions:
 - Lane Speed Limit
 - Lane allowed vehicle: heavy good on 1° lane
- VMS Information describing hardshoulder running / not running:
 - 3 lanes avaliable
 - 4 lanes available

6th Forum Webinar series

Accident: speed, lane status management

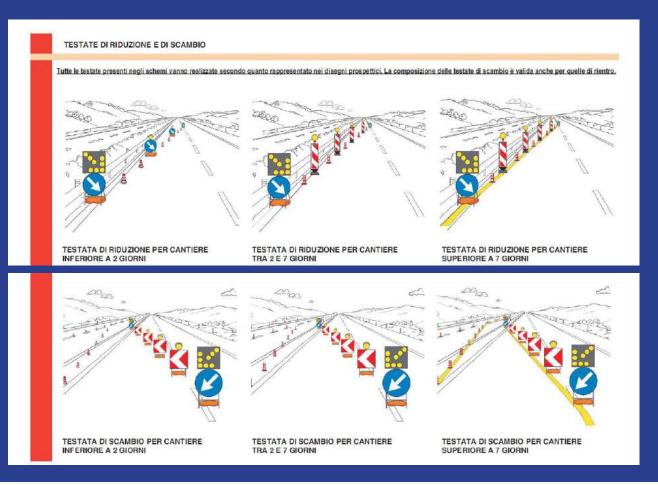
- Speed management
- Accident zone protection
 - Lanes deviated
 - Lanes closed
- LCS + VMS information

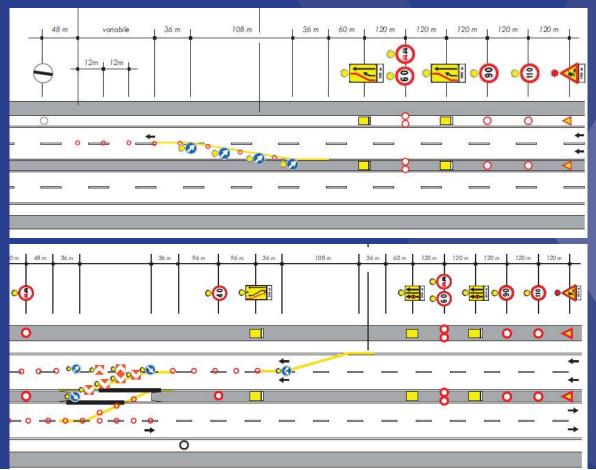
DATEXII


Lane Management use cases: roadworks

- General roadwork management along roads implies lane management Depending on road configuration and number of lanes, several options
 - closed
 - deviated
 - reduced width
 - alternated one way traffic
- Number of lanes lead to several option of lane configuration
 - Specific rules apply to grant level of services to different road types

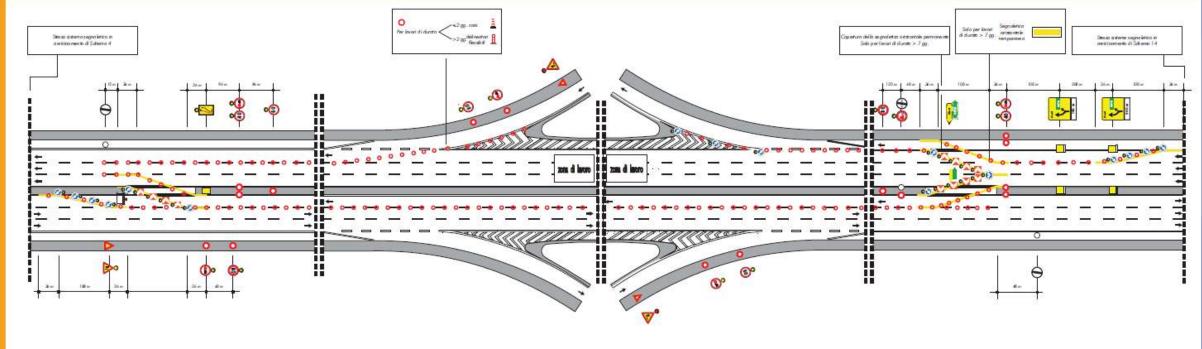
Roadwork management




- Roadwork Zone
- Sections with homogenous management status
 - allowed speed / regulations
 - number of lanes
- Lane status
 - open
 - closed
 - deviated

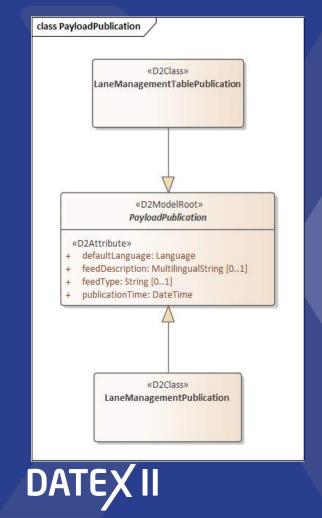
DATEXII

Roadwork layout and traffic regulations lane closures and deviations

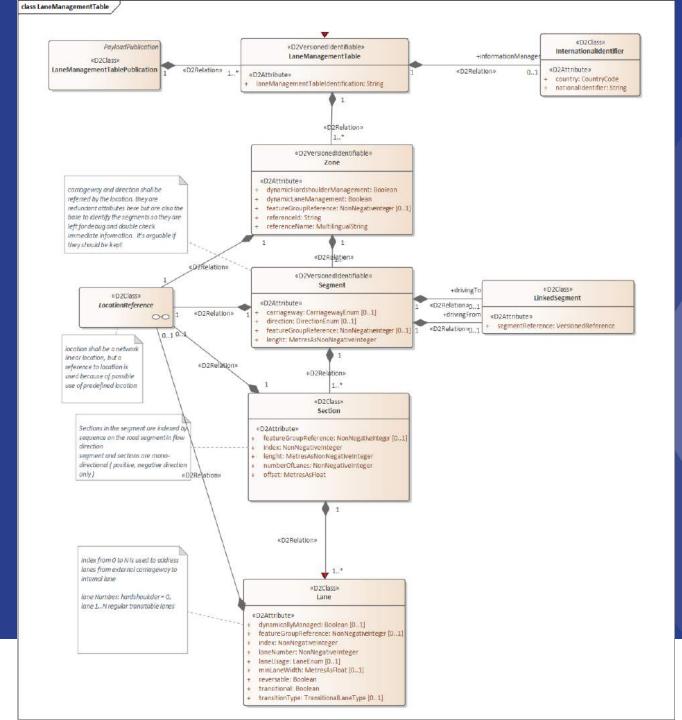


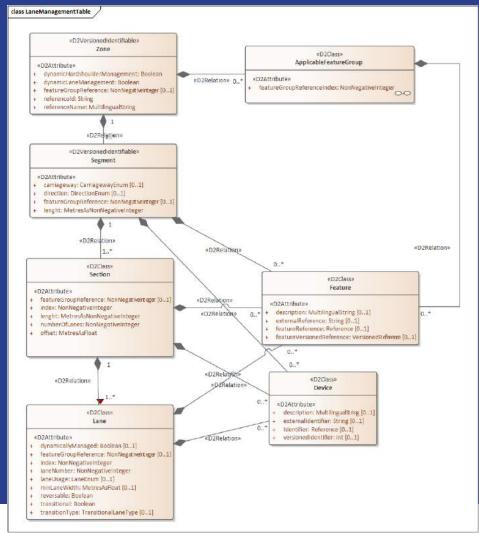
Closures and deviatons combination in complex interconnections

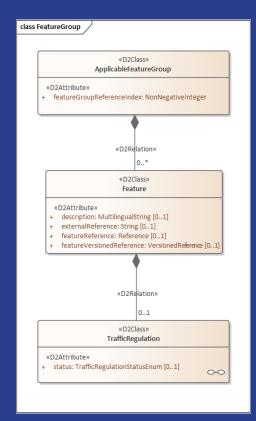
31 DEVIAZIONE PARZIALE IN ZONA DI SVINCOLO CON PRERESTRINGIMENTO


Schema

Lane Carriageway Model concept

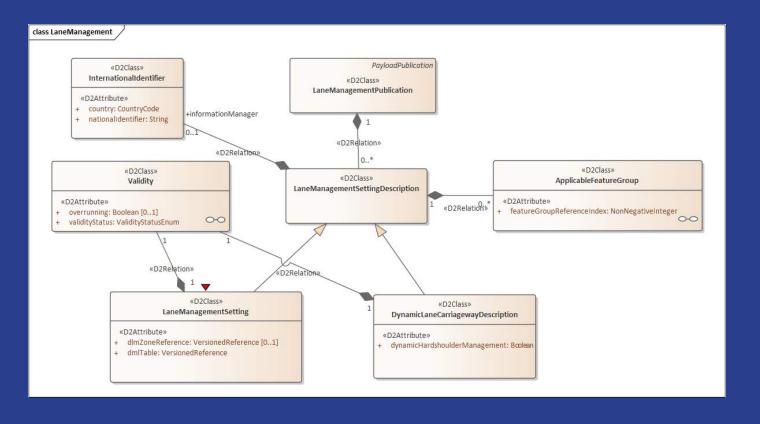

- Both for roadworks and DLM/HM zones the Lane Management Model supports a **«natural» description of the road 'ALONG THE ROAD'** as it is seen developing on subsequent sections, e.g. by a vehicle moving along.
- Optimising the lane status information management based on the assumption of a structured location referencing per segment / sections / lanes.
 - (Indexed Sections remind arrays in Traffic Flow TFP TPEG messages)
- Describes the carriageway and lanes and their status setting as by road signs, VMS, LCS by:
 - Lane Management Table Publication: Static definition possible for predefined zone for DLM / HM with further publication for dynamic information
 - Lane Management Publication : Dynamic definition and setting for not predefined DLM/HM Zones




Lane Management Table 1/2

- Model enhanced location description by
 - Road, Carriageway and Lane
 - Lane Transition description
 - Split road inbound / outbound / interconnecting carriageways
- Morphology & Location
 - Zone & Segments
 - Sections & Lanes
 - Index referenced
 - Optional location, derived by Segment + offset
 - Linked Segments
 - Linked Lanes

Lane management Table 2/2

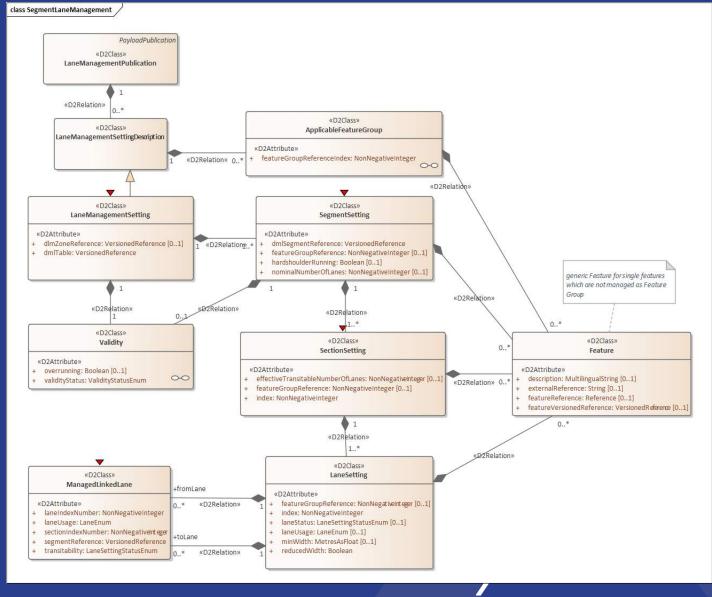


- Per segment/section/lanes
 - Features
 - Devices
 - VMS, Sensors, LCS
- Features group
 - convenient to apply to several Segments, Sections, Lanes with similar features
- Static Features
 - Road characteristics in general, besides traffic regulation: road class level, support to ISAD level, ODD..

DATEXII

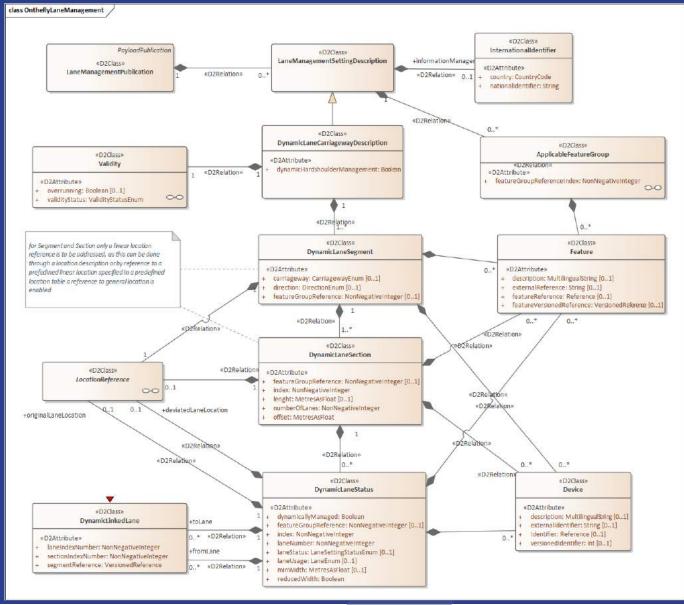
Lane Management Publication (dynamic)

- Validity
- Features group reusable
 - Static Table reference Setting
 - Dynamic Lane and Carriageway description for Roadworks
- LaneManagementSetting
 - DLM/HM Table reference
- DynamicLaneCarragewayDescriptio
 - on the fly configuration, e.g. roadworks



6th Forum Webinar series

Lane Management Setting description


- Single applied Features
- Reusable Feature Group by reference
- Dynamic Status
 - Open
 - Closed
 - Left/Right Deviated
- Splitted / Merged Linked Lanes

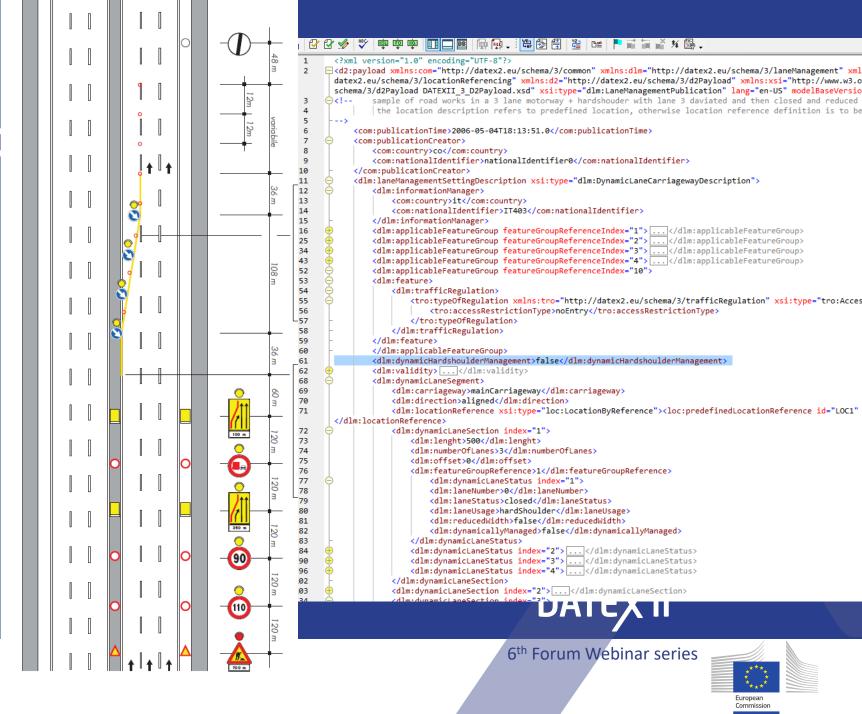
Dynamic Lane Carriageway Description

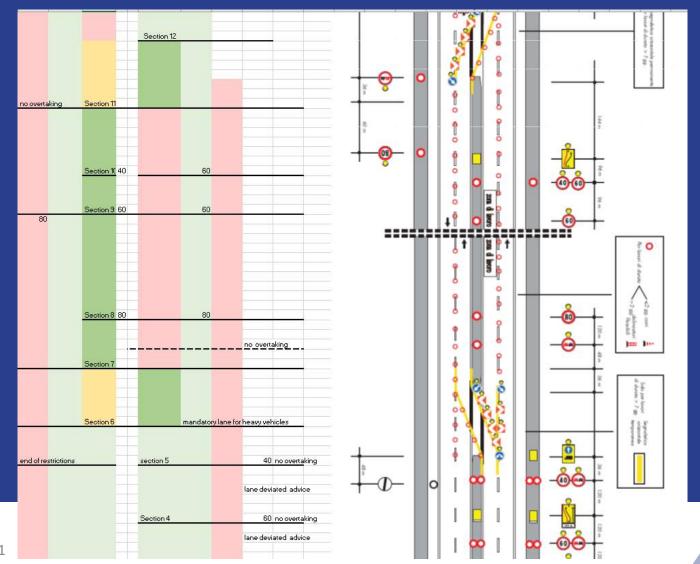
- Location Referencing to assess the morphology
- Features
- Devices
- Dynamic information as per DLM zone management

Sample DLM Zone

```
<?xml version="1.0" encoding="UTF-8"?>
        <!-- edited with XMLSpy v2020 rel. 2 sp1 (x64) (http://www.altova.com) by Fabrizio Paoletti (AUTOSTRADE PER L'ITALIA SPA) -->
      datex2.eu/schema/3/locationReferencing" xmlns:d2="http://datex2.eu/schema/3/d2Payload" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://datex2.eu/
        <com:publicationTime>2006-05-04T18:13:51.0</com:publicationTime>
 5
            <com:publicationCreator> ....
            <dlm:dynamicLaneManagementTable xmlns:loc="http://datex2.eu/schema/3/locationReferencing" id="DML01-Z01-S1" version="1">
 10
                <dlm:dynamicLaneManagementTableIdentification>DLM-ZONE-DEMO-1</dlm:dynamicLaneManagementTableIdentification>
 11
                <dlm:informationManager> ....
 15
                <dlm:zone id="DLM-DEMO-Z1" version="1">
 16
                    <dlm:referenceId>DML01D01Z01</dlm:referenceId>
 17
                    <dlm:referenceName>
 18
                        <com:values>
 19
                            <com:value lang="en">My DLM Zone Demo 1</com:value>
 20
 21
                    </dlm:referenceName>
                    <dlm:dynamicHardshoulderManagement>true</dlm:dynamicHardshoulderManagement>
 22
 23
                    <dlm:dynamicLaneManagement>false</dlm:dynamicLaneManagement>
                    <dlm:applicableFeatureGroup featureGroupReferenceIndex="1">...</dlm:applicableFeatureGroup>
<dlm:applicableFeatureGroup featureGroupReferenceIndex="2">...</dlm:applicableFeatureGroup>
<dlm:applicableFeatureGroup featureGroupReferenceIndex="3">...</dlm:applicableFeatureGroup>
 24
 40
 56
 65
                    <dlm:applicableFeatureGroup featureGroupReferenceIndex="20">....</dlm:applicableFeatureGroup>
 88
                    <dlm:segment id="DLM-DEMO-Z1_SEG1" version="1">
 89
                        <dlm:carriageway>mainCarriageway</dlm:carriageway>
 90
                        <dlm:direction>aligned</dlm:direction>
 91
                        <dlm:lenght>3000</dlm:lenght>
 92
                        <dlm:featureGroupReference>20</dlm:featureGroupReference>
 93
                        <dlm:locationReference xsi:type="loc:SingleRoadLinearLocation">
                            c:alertCLinear xmlns:loc="http://datex2.eu/schema/3/locationReferencing" xsi:type="loc:AlertCMethod4Linear">....</loc:alertCLinear>
 94
119
                        </dlm:locationReference>
                       <dlm:section index="1">...</dlm:section>
<dlm:section index="2">...</dlm:section>
<dlm:section index="3">...</dlm:section>
120
146
172
233
                    </dlm:segment>
234
                    <dlm:segment id="DLM-DEMO-Z1 SEG2" version="1">
235
                        <dlm:carriageway>mainCarriageway</dlm:carriageway>
236
                        <dlm:direction>opposite</dlm:direction>
237
                        <dlm:lenght>3000</dlm:lenght>
238
                        <dlm:featureGroupReference>20</dlm:featureGroupReference>
239
                        <dlm:locationReference xsi:type="loc:SingleRoadLinearLocation"> ... </dlm:locationReference>
                        <dlm:section index="1"> .... </dlm:section>
266
319
                        <dlm:section index="2"> .... </dlm:section>
                        <dlm:section index="3"> .... </dlm:section>
345
371
                    <dlm:locationReference xsi:type="loc:SingleRoadLinearLocation">...</dlm:locationReference>
372
399
            </dlm:dynamicLaneManagementTable>
400
401
        </d2:payload>
402
```

Sample DLM Zone dynamic setting


```
<?xml version="1.0" encoding="UTF-8"?>
            <!-- edited with XMLSpy v2020 rel. 2 sp1 (x64) (http://www.altova.com) by Fabrizio Paoletti (AUTOSTRADE PER L'ITALIA SPA) -->
         datex2.eu/schema/3/locationReferencing" xmlns:d2="http://datex2.eu/schema/3/d2Payload" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocat
            <com:publicationTime>2006-05-04T18:13:51.0</com:publicationTime>
 5
                   <com:publicationCreator>...
 9
                   <dlm:laneManagementSettingDescription xsi:type="dlm:LaneManagementSetting">
10
                         <dlm:informationManager> ... </dlm:informationManager>
14
                         <dlm:applicableFeatureGroup featureGroupReferenceIndex="1">....</dlm:applicableFeatureGroup>
30
                        <dlm:applicableFeatureGroup featureGroupReferenceIndex="2">
32
                                     <dlm:trafficRegulation>
33
                                           <tro:typeOfRegulation xsi:type="tro:SpeedLimit">
34
                                                 <tro:minValue>90</tro:minValue>
35
                                           </tro:typeOfRegulation>
36
                                    </dlm:trafficRegulation>
37
                               </dlm:feature>
38
                               <dlm:feature>
39
                                     <dlm:trafficRegulation>
40
                                           <tro:typeOfRegulation xsi:type="tro:SpeedLimit">
41
                                                <tro:maxValue>110</tro:maxValue>
42
                                           </tro:typeOfRegulation>
43
                                     </dlm:trafficRegulation>
44
                               </dlm:feature>
45
                        </dlm:applicableFeatureGroup>
46
                        <dlm:applicableFeatureGroup featureGroupReferenceIndex="3">....</dlm:applicableFeatureGroup>
55
                        <dlm:dlmZoneReference id="111" version="1" xsi:type="com:VersionedReference"></dlm:dlmZoneReference>
56
                        <dlm:dmlTable id="DMLTABLEDEMO01" version="1" xsi:type="com:VersionedReference"></dlm:dmlTable>
57
                        <dlm:validity> ... </dlm:validity>
63
                        <dlm:segmentSetting>
64
                               <dlm:dmlSegmentReference id="DLM-DEMO-Z1 SEG1" version="1" xsi:type="com:VersionedReference"></dlm:dmlSegmentReference>
65
                               <dlm:sectionSetting index="1">
66
                                     <dlm:effectiveTransitableNumberOfLanes>2</dlm:effectiveTransitableNumberOfLanes>
67
                                     <dlm:laneSetting index="1" xsi:type="dlm:LaneSetting">
                                           <dlm:laneStatus>closed</dlm:laneStatus>
68
69
                                           <dlm:laneUsage>hardShoulder</dlm:laneUsage>
70
                                           <dlm:featureGroupReference>3</dlm:featureGroupReference>
71
                                           <dlm:reducedWidth>false</dlm:reducedWidth>
72
                                     </dlm:laneSetting>
73
                                     <dlm:laneSetting index="2" xsi:type="dlm:LaneSetting">
74
                                           <dlm:laneStatus>open</dlm:laneStatus>
75
                                           <dlm:laneUsage>slowVehicleLane</dlm:laneUsage>
76
                                           <dlm:featureGroupReference>2</dlm:featureGroupReference>
77
                                           <dlm:reducedWidth>false</dlm:reducedWidth>
78
                                     </dlm:laneSetting>
79
                                     <dlm:laneSetting index="3" xsi:type="dlm:LaneSetting">
80
                                           <dlm:laneStatus>open</dlm:laneStatus>
81
                                           <dlm:laneUsage>overtakingLane</dlm:laneUsage>
82
                                           <dlm:featureGroupReference>1</dlm:featureGroupReference>
83
                                           <dlm:reducedWidth>false</dlm:reducedWidth>
84
                                    </dlm:laneSetting>
85
                               </dlm:sectionSetting>
86
                               <dlm:sectionSetting index="2">
87
                                     <dlm:effectiveTransitableNumberOfLanes>2</dlm:effectiveTransitableNumberOfLanes>
≯38
                                     <dlm:laneSetting index="1" xsi:type="dlm:LaneSetting">
```



Roadworks Management

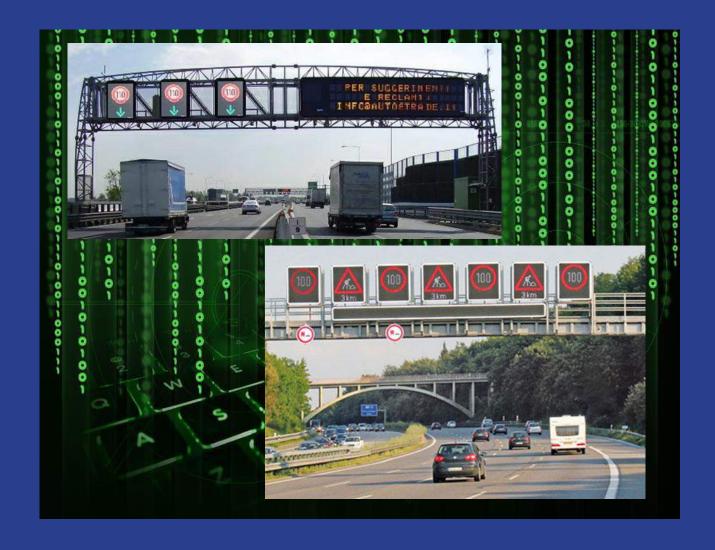
Overtaking lane closed

Speed reduction and deviated / closed lane

Complex Y deviated lane

Interactive XML visualisation

DATEXII



Conclusions

- Roadworks management layout description has similar requirements and characteristics as for Dynamic Lane / Hardshoulder Management
- A compact unified modeling to manage Lane & Carriageway configuration has been designed to describe static configuration and dynamic lane managed setting.
 - Compact and optimised to derive C ITS DENM Roadwork and IVS messages
- Model to be published as proposed starting model and assessed against other possible usages
 - Describing road features / devices along the carriageway/ segment / sections
 - Could be used to support delivery of features such as ISAD / ODD levels in CAV / ADAS application

Thanks for listening

Fabrizio Paoletti autostrade // Tech autostrade // per l'Italia fpaoletti@autostrade.it

DATEXII

6th Forum Webinar series

